Cancer is not a single disease but a collection of diseases. It is complex and does not readily give up its secrets. Despite the challenges cancer poses, scientists and clinicians continue to hone the way in which they diagnose and treat it.
Modern medicine means that diagnosis rates for many cancers are up, as are survival rates. However, with an estimated 19.3 million Trusted Source new cases of cancer worldwide in 2020, there is still much work to be done.
MNT recently contacted a number of medical experts and researchers and asked them to speak about the aspects of cancer research that they find most exciting. Their answers are fascinating and demonstrate the incredible variety of approaches that scientists are using to understand and combat cancer.
Bacteria and magnetism
We will start today’s journey into cutting edge oncology with a surprising guest: magnetically responsive bacteria.
Due to the difficulty of targeting systemically delivered therapeutics for cancer, interest has grown in exploiting biological agents to enhance tumor accumulation, explained Prof. Simone Schürle-Finke, Ph.D., from ETH Zurich in Switzerland.
In other words, getting cancer drugs to the right place is not as straightforward as one might hope. Schürle-Finke is among the researchers who are now enlisting the help of specialized bacteria.
She said how scientists have known for a century that certain bacteria can colonize tumors and trigger regression. She explained that today, thanks to modern genetic engineering techniques, attenuated bacteria are available that can have a therapeutic effect exactly where this is necessary.
However, despite the promise of bacterial cancer therapy, there are still challenges to meet. Delivering the doses to the right place and getting them into the tumor remain foremost among challenges hampering clinical translation — only about 1% of a systemically injected dose reaches the tumor, explained Prof. Schürle-Finke.
Personalized medicine
Personalized medicine is transforming the landscape of medicine and how healthcare providers can offer and plan personalized care for each of their patients, believes Dr. Santosh Kesari, Ph.D.Trusted Source, director of neuro-oncology at Providence Saint John’s Health Center in Santa Monica, CA.
Dr. Kesari is also chair of the Department of Translational Neurosciences at Saint John’s Cancer Institute and regional medical director for the Research Clinical Institute of Providence Southern California.
Describing personalized medicine, Dr. Kesari said, It is an approach for disease prevention and new cancer treatments that takes into account biological, genetic, behavioral, environmental, and social risk factors that are unique to every individual.
He continued, Personalized medicine is rooted in early detection and prevention; integrating data from genomics and other advanced technologies; digital health monitoring; and incorporating the latest medical innovations for optimizing outcomes.
Chronotherapy: Counting down cancer
Continuing with the personalization theme, Dr. Robert Dallmann from Warwick Medical School at Warwick University in the United Kingdom talked with us about chronotherapyTrusted Source:
Propelled by the 2017 Nobel Prize in Medicine or Physiology [going] to three circadian biologists for uncovering the molecular mechanism of circadian biological clocks, cancer chronotherapy is gaining critical momentum to enter mainstream oncology — especially in the context of personalized medicine.
Dr. Dallmann explained that many key physiological processes in the cells of our body are modulated in a daily fashion by the circadian clock. These cellular clocks are disrupted in some tumors but not in others.
Interestingly, a functional clock in the tumor predicts the survival time of patients, which has been shown for brain as well as breast tumors.
Therefore, he explained, if scientists could determine the clock status in solid tumors, it would allow doctors to more easily determine whether a patient is at high or low risk. It might also help guide therapy.
There is great potential in optimizing new cancer treatments plans with existing drugs by taking into account the interaction with the circadian system of the patient, continued Dr. Dallmann.
More recently, the circadian clock mechanism itself has been proposed as a new cancer treatments target in glioblastoma. The authors of the glioblastoma study concluded that pharmacologic targeting of circadian networks specifically disrupted cancer stem cell growth and self-renewal.
However, whether this might be generalized to many solid tumors or even other chronic diseases remains to be elucidated, said Dr. Dallmann.
Read my more blogs from here